dv | |||||||||
linear motion: | F | = m · a = | m · | v | ; | v | = | ||
dt | |||||||||
rotation: | Tq | = | J · | ω | ; | ω | = | 2 π f |
Tq : mechanical shaft torque [ Nm = Ws ]
J : total moment of inertia of the rotating masses [ kg m2 ]
ω | : angular acceleration [ 1 / s2 ] ; ω : angular velocity [ 1 / s ] |
dω | 1 | ||||
ω | = | = | · ( TqT − TqG ) | ||
dt | J |
TqT : turbine torque (accelerates)
TqG : generator torque (retards)
with P = ω · Tq
ω | ω | = J -1 · ( ω TqT − ω TqG ) = J -1 · ( PT − PG ) = J -1 · Pacc |
PT(t) − PG(t) = Pacc(t) : accelerating power ( = dEkin / dt with Ekin = J · ω2 / 2 )
ω | ω | P0 | Pacc(t) | 1 | Pacc(t) | |||||
− | · | − | = | · | = | · | ||||
ω0 | ω0 | ω02 J | P0 | TA | P0 |
TA = ω02 J / P0 ≈ 8 ... 20 s : accelerating time constant
PG(t) = PL(t) + ΔP
ΔP : disturbance of power balance (load increase, generator outage or tie line outage) at t = t0
ΔPG(t) = PG(t) − P0 = PL(t) − P0 + ΔP
ΔPG(t) = ΔPL(t) + ΔP
dΔPT | 1 | · ( −ΔPT(t) − KTC · ( f (t) − f0 ) ) | simplified turbine model (first order delay) |
|
= | ||||
dt | TT |
ΔPT(t) = PT(t) − P0 ; Δf (t) = f (t) − f0
final state
dΔPT / dt = 0 => ΔPT = − KTC · Δf
ΔPT | KTC · f0 | Δf | Δf | |||
= − | · | = − kTC · | ||||
P0 | P0 | f0 | f0 |
PL(t) = P0 + KL · Δf (t)
ΔPL(t) = PL(t) − P0 = KL · Δf (t)
ΔPL | KL · f0 | Δf | Δf | |||||
= | · | = | kL | · | ||||
P0 | P0 | f0 | f0 |
ΔP = 0 for t <  t0
=> PT(t) = PG(t) = PL(t) = P0 ; ΔPT(t) = ΔPG(t) = ΔPL(t) = 0
ΔP ≠ 0 for t ≥  t0
Δf = 0 ; ΔPT = 0 ; ΔPL = 0 but ΔPG = ΔP = − Pacc
ω | ω | 1 | Pacc(t0) | 1 | ΔP | ||||||
− | · | − | = | · | = − | · | initial slope only depends on TA and ΔP | ||||
ω0 | ω0 | TA | P0 | TA | P0 |
ω | = 0 => Pacc = ΔPT − ΔPG = 0 |
− KTC · Δf − KL · Δf − ΔP = 0 => Δf = − ΔP / ( KTC + KL ) = − ΔP / KS
KS = KTC + KL
Δf | ΔP | P0 | ΔP | 1 | ||||||
= − | · | = − | · | |||||||
f0 | P0 | f0 · KS | P0 | kS |
ΔPSC(t) = − KSC · ∫ Δf (t) dt
dΔPT | 1 | · ( −ΔPT(t) − KTC · Δf (t) − KSC · ∫ Δf (t) dt ) | turbine with secondary control |
|
= | ||||
dt | TT |
Δf = 0 => frequency recovered to normal ; primary control relieved
ΔP2 => Δf
ΔPPC1 = − KS1 · Δf ; ΔPPC2 = − KS2 · Δf ; KSi = KLi + KTCi
ΔP2 = ΔPPC1 + ΔPPC2 outage compensated by primary control in both systems
ΔP12 = ΔPPC1 = ΔP2 − ΔPPC2 = − ΔP21 power exchange
ace1( t ) = β1 · Δf + ΔP12 : area control error
ΔPSC1 = − KSC1 · ∫ ( β1 Δf + ΔP12 ) dt
ΔPSC2 = − KSC2 · ∫ ( β2 Δf + ΔP21 ) dt
adjust β1 ≈ KS1 ; β2 ≈ KS2
ace1( t ) = β1 · Δf + ΔP12
= β1 · Δf − KS1 · Δf
≈ 0
=> secondary control inactive in system 1
ace2( t ) = β2 · Δf + ΔP21
= β2 · Δf − KS2 · Δf − ΔP2
≈ − ΔP2
=> secondary control active in system 2
Δf = 0 frequency recovered to normal
ΔPPC1 = 0 ; ΔPPC2 = 0 primary control relieved in both systems
ΔPSC1 = 0 ; ΔPSC2 = ΔP2 deficit completely covered by secondary control of system 2
ΔP12 = 0 power exchange returned to schedule